2006 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2006 to re-evaluate the level of support.

Water body name: Taylor Bayou Above Tidal **Segment ID:** 0701 33.0 Miles Water body size: Water body type: Freshwater Stream # of # # of Mean of Dataset 2006 Integ Imp Carry Assessment Area (AU) Samples Exc Supp Forward Samples Qualifier Supp Category Aquatic Life Use **Acute Toxic Substances in water** Aluminum from 8 miles upstream of saltwater lock to the 10 5 JO NA NA No 10 confluence of N and S Forks Taylor Bayou Multiple Constituents from 8 miles upstream of saltwater lock to the 10 0 AD FS FS No 10 confluence of N and S Forks Taylor Bayou **Chronic Toxic Substances in water** Lead 0701 02 from 8 miles upstream of saltwater lock to the 7 2.0 JO NA NA No confluence of N and S Forks Taylor Bayou Multiple Constituents 0701 02 from 8 miles upstream of saltwater lock to the 10 10 AD FS FS No confluence of N and S Forks Taylor Bayou Dissolved Oxygen 24hr average Dissolved Oxygen 24hr 0701 01 From saltwater lock to 8 miles upstream 5 NS NS 12 12 AD 5a No 0701 02 from 8 miles upstream of saltwater lock to the 24 11 NS NS 31 AD 5a No confluence of N and S Forks Taylor Bayou Dissolved Oxygen 24hr minimum Dissolved Oxygen 24hr From saltwater lock to 8 miles upstream 12 AD NS NS 5a 12 No from 8 miles upstream of saltwater lock to the 24 NS NS 5a AD No 31 confluence of N and S Forks Taylor Bayou Dissolved Oxygen grab minimum Dissolved Oxygen Grab 0701 01 From saltwater lock to 8 miles upstream SM FS FS 31 No 31 from 8 miles upstream of saltwater lock to the 41 **SM** FS FS No 56 confluence of N and S Forks Taylor Bayou Dissolved Oxygen grab screening level Dissolved Oxygen Grab 0701 01 From saltwater lock to 8 miles upstream 31 SMCS CS No 31 6 0701 02 from 8 miles upstream of saltwater lock to the 41 7 CS CS SM 56 No confluence of N and S Forks Taylor Bayou Toxic Substances in sediment Multiple Constituents from 8 miles upstream of saltwater lock to the ID NA NA No 1 confluence of N and S Forks Taylor Bayou

Segment ID: 0701	Water body name: Taylor Bayou Above Tidal	
Water body type: Freshwater Stre	zam	Water body size: 33.0 Miles
	AU ID Assessment Area (AU) # of # dean of Samples Assessed Exc Samples	Dataset 2006 Integ Imp Carry Qualifier Supp Supp Category Forward
Fish Consumption Use		
Bioaccumulative Toxics in fish tissue	e	
Multiple Constituents	0701_01 From saltwater lock to 8 miles upstream 2 2	ID NA NA No
DSHS Advisories, Closures, and Risl	k Assessments	
Risk Assess No Advisory	0701_01 From saltwater lock to 8 miles upstream	OE FS FS No
	0701_02 from 8 miles upstream of saltwater lock to the confluence of N and S Forks Taylor Bayou	OE FS FS No
	0701_03 From the confluence with N and S forks of Taylor Bayou to LNVA canal	OE FS FS No
HH Bioaccumulative Toxics in water	r	
Chromium	0701_02 from 8 miles upstream of saltwater lock to the confluence of N and S Forks Taylor Bayou	AD FS FS No
Lead	0701_02 from 8 miles upstream of saltwater lock to the confluence of N and S Forks Taylor Bayou	LD NC NC No

2006 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2006 to re-evaluate the level of support.

0701 Water body name: Taylor Bayou Above Tidal **Segment ID:** 33.0 Miles Water body size: Water body type: Freshwater Stream # # of # of Mean of Dataset 2006 Integ <u>Imp</u> Carry Assessment Area (AU) Samples Assessed Exc Samples Supp Supp Category Forward Qualifier General Use **Dissolved Solids** Chloride 0701_01 From saltwater lock to 8 miles upstream 45 **78.0** AD FS FS No 45 0701 02 from 8 miles upstream of saltwater lock to the 45 45 78.0 AD FS FS No confluence of N and S Forks Taylor Bayou Sulfate 0701 01 From saltwater lock to 8 miles upstream 35 36.0 AD FS FS No 35 0701 02 from 8 miles upstream of saltwater lock to the 35 36.0 AD FS FS 35 No confluence of N and S Forks Taylor Bayou Total Dissolved Solids 0701 01 From saltwater lock to 8 miles upstream 45 45 274.0 AD FS FS No from 8 miles upstream of saltwater lock to the 45 45 274.0 AD FS FS No confluence of N and S Forks Taylor Bayou High pH pН 0701 01 From saltwater lock to 8 miles upstream 31 0 AD FS FS No 31 FS FS 0701 02 from 8 miles upstream of saltwater lock to the 56 41 0 AD No confluence of N and S Forks Taylor Bayou Low pH рН 0701 01 From saltwater lock to 8 miles upstream 2 FS FS 31 31 AD No 2 0701 02 from 8 miles upstream of saltwater lock to the 41 AD FS FS No 56 confluence of N and S Forks Taylor Bayou

2006 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2006 to re-evaluate the level of support.

0701 Water body name: Taylor Bayou Above Tidal **Segment ID:** 33.0 Miles Water body size: Water body type: Freshwater Stream # # of # of Mean of Dataset 2006 Integ Imp Carry Assessment Area (AU) Samples Assessed Exc Samples Supp Supp Category Forward Qualifier General Use **Nutrient Screening Levels** Ammonia From saltwater lock to 8 miles upstream **29** 0 AD NC NC No 29 0701 02 from 8 miles upstream of saltwater lock to the 35 35 5 AD NC NC No confluence of N and S Forks Taylor Bayou Chlorophyll-a 0701 01 From saltwater lock to 8 miles upstream CS CS 29 11 AD No 29 from 8 miles upstream of saltwater lock to the 7 CS CS 0701 02 10 AD No 10 confluence of N and S Forks Taylor Bayou 0701 01 From saltwater lock to 8 miles upstream Nitrate **30 30** AD NC NC No from 8 miles upstream of saltwater lock to the **29** 29 0 AD NC NC No confluence of N and S Forks Taylor Bayou Orthophosphorus 0701_01 From saltwater lock to 8 miles upstream 2 AD NC NC 38 38 No from 8 miles upstream of saltwater lock to the 36 36 AD NC NC No confluence of N and S Forks Taylor Bayou 0701 01 From saltwater lock to 8 miles upstream **Total Phosphorus** 29 **29** AD NC NC No from 8 miles upstream of saltwater lock to the 35 35 AD NC NC No confluence of N and S Forks Taylor Bayou Water Temperature 0701 01 From saltwater lock to 8 miles upstream Temperature 31 31 0 AD FS FS No from 8 miles upstream of saltwater lock to the 41 0 AD FS FS 56 No confluence of N and S Forks Taylor Bayou

2006 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2006 to re-evaluate the level of support.

0701 Water body name: Taylor Bayou Above Tidal **Segment ID:** 33.0 Miles Water body type: Freshwater Stream Water body size: # # of # of Mean of Dataset 2006 Integ <u>Imp</u> Carry Assessment Area (AU) Samples Assessed Exc Supp Samples Supp Category Forward Qualifier Recreation Use **Bacteria Geomean** E. coli 0701_01 From saltwater lock to 8 miles upstream 10 10 35.0 AD FS FS No 0701 02 from 8 miles upstream of saltwater lock to the 15 15 33.0 AD FS FS No confluence of N and S Forks Taylor Bayou Fecal coliform 0701 01 From saltwater lock to 8 miles upstream FS FS 12 38.0 AD No 12 from 8 miles upstream of saltwater lock to the 20 FS FS 0701 02 24.0 AD No 20 confluence of N and S Forks Taylor Bayou **Bacteria Single Sample** E. coli 0701 01 From saltwater lock to 8 miles upstream 10 1 AD FS FS No 10 0701 02 from 8 miles upstream of saltwater lock to the 2 15 15 AD FS FS No confluence of N and S Forks Taylor Bayou Fecal coliform 0701 01 From saltwater lock to 8 miles upstream AD No 12 12 1 FS FS 0701 02 from 8 miles upstream of saltwater lock to the FS FS 20 20 1 AD No confluence of N and S Forks Taylor Bayou

Segment ID: 0701D Water body type: Reservoir	Water b	ody name: Shallow	Prong Lake (unclassifie	d watei	body)	Water bo	dy size:	150	.0 A	cres
	<u>AU ID</u>	Assessment Area (AU)	# of_ Samples	#_ Assessed	# of Exc	Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	2006 Supp	Integ Supp	Imp Category	<u>Carry</u> Forward
Aquatic Life Use	_										
Dissolved Oxygen 24hr average	_										
Dissolved Oxygen 24hr	0701D_01	Entire water body	0	0			ID	NA	NA		No
Dissolved Oxygen 24hr minimum											
Dissolved Oxygen 24hr	0701D_01	Entire water body	0	0			ID	NA	NA		No
Dissolved Oxygen grab minimum											
Dissolved Oxygen Grab		Entire water body	19	19	9		AD	NS	NS	5e	No
Dissolved Oxygen grab screening level											
Dissolved Oxygen Grab	0701D_01	Entire water body	19	19	10		AD	CS	CS		No
Fish Consumption Use	_										
Bioaccumulative Toxics in fish tissue											
Arsenic	0701D_01	Entire water body	20	20	9		JQ	CS	CS		No
Multiple Constituents	0701D_01	Entire water body	20	20	1		AD	NC	NC		No
General Use	_										
Nutrient Screening Levels											
Ammonia	0701D_01	Entire water body	20	20	0		AD	NC	NC		No
Chlorophyll-a	0701D_01	Entire water body	20	20	0		AD	NC	NC		No
Nitrate	0701D_01	Entire water body	20	20	0		AD	NC	NC		No
Orthophosphorus	0701D_01	Entire water body	20	20	0		AD	NC	NC		No
Total Phosphorus	0701D_01	Entire water body	20	20	0		AD	NC	NC		No

Segment ID: 0701D	Water body name: Shallow Prong Lake	(unclassifie	d water	body)				
Water body type: Reservoir					Water bo	ody size:	150.0	Acres
	AU ID Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> <u>Assessed</u>	# of Mean of Exc Samples	<u>Dataset</u> <u>Qualifier</u>	<u>2006</u> <u>Supp</u>	<u>Integ</u> <u>Supp C</u>	<u>Imp Carry</u> Category <u>Forward</u>
Recreation Use								
Bacteria Geomean								
E. coli	0701D_01 Entire water body	10	10	11.0	AD	FS	FS	No
Fecal coliform	0701D_01 Entire water body	12	12	30.0	AD	FS	FS	No
Bacteria Single Sample								
E. coli	0701D_01 Entire water body	10	10	0	AD	FS	FS	No
Fecal coliform	0701D_01 Entire water body	12	12	3	AD	FS	FS	No

Water body type: Tidal Stream							Water bo	dy size:	: 63.0) M	liles
	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> <u>Assessed</u>	<u># of</u> <u>Exc</u>	Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	<u>2006</u> <u>Supp</u>	<u>Integ</u> <u>Supp</u>	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forware
Aquatic Life Use											
Acute Toxic Substances in water	_										
Multiple Constituents	0702_03	From Port Bolivar to top of East Bay	1	1	0		ID	NA	NA		Ne
Chronic Toxic Substances in water	_		=		-				•		
Multiple Constituents	0702_03	From Port Bolivar to top of East Bay	1	1			ID	NA	NA		N
Dissolved Oxygen 24hr average											
Dissolved Oxygen 24hr	0702_01	From East Bay to confluence with Sabine-Neches Canal Tidal (0703)	0	0			ID	NA	NA		N
	0702_02	Taylor Bayou tidal	0	0			ID	NA	NA		N
	0702_03	From Port Bolivar to top of East Bay	0	0			ID	NA	NA		N
Dissolved Oxygen 24hr minimum											
Dissolved Oxygen 24hr	0702_01	From East Bay to confluence with Sabine-Neches Canal Tidal (0703)	0	0			ID	NA	NA		N
	0702_02	Taylor Bayou tidal	0	0			ID	NA	NA		N
	0702_03	From Port Bolivar to top of East Bay	0	0			ID	NA	NA		N
Dissolved Oxygen grab minimum											
Dissolved Oxygen Grab	0702_01	From East Bay to confluence with Sabine-Neches Canal Tidal (0703)	19	19	0		AD	FS	FS		N
	0702_02	Taylor Bayou tidal	19	19	0		AD	FS	FS		N
	0702_03	From Port Bolivar to top of East Bay	78	78	2		AD	FS	FS		N
Dissolved Oxygen grab screening level											
Dissolved Oxygen Grab	0702_01	From East Bay to confluence with Sabine-Neches Canal Tidal (0703)	19	19	0		AD	NC	NC		N
	0702_02	Taylor Bayou tidal	19	19	1		AD	NC	NC		1
	0702_03	From Port Bolivar to top of East Bay	78	78	3		AD	NC	NC		N
Toxic Substances in sediment											
Multiple Constituents	0702_01	From East Bay to confluence with Sabine-Neches Canal Tidal (0703)	2	2	0		ID	NA	NA		N
	0702_02	Taylor Bayou tidal	2	2	0		ID	NA	NA		1
	0702_03	From Port Bolivar to top of East Bay	1	1	0		ID	NA	NA		1

gment ID: 0702	Water b	ody name:	Intracoastal Waterwa	ay Tidal			***		<i>(</i> 2.2	3.5	.,
ter body type: Tidal Stream							Water bo	ody size:	63.0	Mı	iles
	<u>AU ID</u>	Assessment Ar	ea (AII)	<u># of</u> <u>Samples</u>	<u>#</u> <u>#</u> <u>Assessed</u> E	of Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	2006 Supp	Integ Supp	Imp Category	<u>Car</u> Forw
	<u>AU ID</u>	rissessment rit	<u> </u>	<u>Sumpres</u>	<u>_</u>	<u>Samples</u>	Quanner	<u>Бирр</u>	<u> </u>	Category	<u>1 01 w</u>
h Consumption Use											
IH Bioaccumulative Toxics in water											
Multiple Constituents	0702 03	From Port Boli	var to top of East Bay	1	1		ID	NA	NA]
	****_**	1101111101112011	van to top of East Easy	1	-		12	1111	1111		

Segment ID:	0702	Water b	oody name: Intracoastal Waterway	<u>Tidal</u>								
Water body type:	Tidal Stream							Water bo	ody size:	63.0) M	liles
		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	#_ <u>Assessed</u>	# of Exc	Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	<u>2006</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
High pH												
рН		0702_01	From East Bay to confluence with Sabine-Neches Canal Tidal (0703)	19	19	0		AD	FS	FS		No
		0702_02	Taylor Bayou tidal	20	20	0		AD	FS	FS		No
		0702_03	From Port Bolivar to top of East Bay	53	53	0		AD	FS	FS		No
Low pH												
рН		0702_01	From East Bay to confluence with Sabine-Neches Canal Tidal (0703)	19	19	0		AD	FS	FS		No
		0702_02	Taylor Bayou tidal	20	20	0		AD	FS	FS		No
		0702_03	From Port Bolivar to top of East Bay	53	53	0		AD	FS	FS		No

ater body type: Tidal Stream			# of	<u>#</u>	ш - С	Man 6	Water be	·			liles
	<u>AU ID</u>	Assessment Area (AU)		Assessed	# of Exc	Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	<u>2006</u> <u>Supp</u>	<u>Integ</u> <u>Supp</u>	<u>Imp</u> <u>Category</u>	<u>Carry</u> <u>Forwa</u>
eneral Use											
Nutrient Screening Levels											
Ammonia	0702_01	From East Bay to confluence with Sabine-Neches Canal Tidal (0703)	17	17	0		AD	NC	NC		N
	0702_02	Taylor Bayou tidal	20	20	0		AD	NC	NC		1
	0702_03	From Port Bolivar to top of East Bay	4	4	0		LD	NC	NC		1
Chlorophyll-a	0702_01	From East Bay to confluence with Sabine-Neches Canal Tidal (0703)	18	18	0		AD	NC	NC]
	0702_02	Taylor Bayou tidal	20	20	5		AD	NC	NC]
	0702_03	From Port Bolivar to top of East Bay	4	4	1		LD	NC	NC		
Nitrate	0702_01	From East Bay to confluence with Sabine-Neches Canal Tidal (0703)	19	19	0		AD	NC	NC		
	0702_02	Taylor Bayou tidal	21	21	0		AD	NC	NC		
	0702_03	From Port Bolivar to top of East Bay	17	17	0		AD	NC	NC		
Orthophosphorus	0702_01	From East Bay to confluence with Sabine-Neches Canal Tidal (0703)	19	19	2		AD	NC	NC		
	0702_02	Taylor Bayou tidal	21	21	1		AD	NC	NC		
	0702_03	From Port Bolivar to top of East Bay	21	21	0		AD	NC	NC		
Total Phosphorus	0702_01	From East Bay to confluence with Sabine-Neches Canal Tidal (0703)	18	18	0		AD	NC	NC		
	0702_02	Taylor Bayou tidal	20	20	0		AD	NC	NC		
	0702_03	From Port Bolivar to top of East Bay	21	21	0		AD	NC	NC		
Water Temperature											
Temperature	0702_01	From East Bay to confluence with Sabine-Neches Canal Tidal (0703)	19	19	0		AD	FS	FS		
	0702_02	Taylor Bayou tidal	20	20	0		AD	FS	FS		
	0702 03	From Port Bolivar to top of East Bay	78	78	0		AD	FS	FS		

Assessment Area (AU) 11 From East Bay to confluence with Sabine-Neches Canal Tidal (0703) 12 Taylor Bayou tidal 13 From Port Bolivar to top of East Bay	# of Samples	#_ Assessed	# of Exc	Mean of Samples	Water bo	2006 Supp	Integ Supp	Imp Category	files <u>Carry</u> <u>Forward</u>
Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal	12			45.0	AD	NS			
Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal	12			45.0	AD	NS			
Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal	12			45.0	AD	NS			
		12					NS	5e	No
From Port Bolivar to top of East Bay	16	14		14.0	AD	FS	FS		No
	10	16		39.0	AD	NS	NS	5c	No
From East Bay to confluence with Sabine-Neches Canal Tidal (0703)	13	13		18.0	SM	FS	FS		No
2 Taylor Bayou tidal	13	13		20.0	AD	FS	FS		No
3 From Port Bolivar to top of East Bay	52	52		26.0	AD	FS	FS		No
3	12	12	4		AD	FS	FS		No
	12	12	1		AD	FS	FS		No
3 From Port Bolivar to top of East Bay	16	16	3		AD	FS	FS		No
	13	13	1		SM	FS	FS		No
· /	13	13	0		AD	FS	FS		No
3 From Port Bolivar to top of East Bay	52	52	0		AD	FS	FS		No
	Prom Port Bolivar to top of East Bay From East Bay to confluence with Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal From Port Bolivar to top of East Bay From East Bay to confluence with Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal	From Port Bolivar to top of East Bay From East Bay to confluence with Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal From Port Bolivar to top of East Bay From Port Bolivar to top of East Bay From East Bay to confluence with Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal Taylor Bayou tidal	From Port Bolivar to top of East Bay From East Bay to confluence with Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal From East Bay to confluence with Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal Trom East Bay to confluence with Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal Taylor Bayou tidal	From Port Bolivar to top of East Bay 12 12 4 Sabine-Neches Canal Tidal (0703) 13 13 13 0 14 Sabine-Neches Canal Tidal (0703) 15 Trom East Bay to confluence with 12 12 12 13 16 16 16 16 16 16 16 16 16 16 16 16 16 1	From Port Bolivar to top of East Bay 52 52 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 27 28 29 29 20 20 20 20 20 20 20 20	From Port Bolivar to top of East Bay 52 52 26.0 AD 11 From East Bay to confluence with Sabine-Neches Canal Tidal (0703) 12 Taylor Bayou tidal 13 13 14 SM Sabine-Neches Canal Tidal (0703) 15 Taylor Bayou tidal 16 17 Taylor Bayou tidal 18 Taylor Bayou tidal 19 Taylor Bayou tidal 10 Taylor Bayou tidal 11 Taylor Bayou tidal Taylor Bayou tidal	From Port Bolivar to top of East Bay 52 52 26.0 AD FS AD FS	From Port Bolivar to top of East Bay 52 52 26.0 AD FS FS O1 From East Bay to confluence with Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal 12 12 13 14 AD FS FS FS O3 From Port Bolivar to top of East Bay 16 16 3 AD FS FS O1 From East Bay to confluence with Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal 13 13 14 SM FS FS Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal 13 13 10 AD FS FS FS	From Port Bolivar to top of East Bay 52 52 26.0 AD FS FS O1 From East Bay to confluence with Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal 12 12 12 13 AD FS FS Sabine-Neches Canal Tidal (0703) From Port Bolivar to top of East Bay 16 16 3 AD FS FS O1 From East Bay to confluence with Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal 13 13 14 SM FS FS Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal 13 13 14 AD FS FS FS FS Sabine-Neches Canal Tidal (0703) Taylor Bayou tidal Taylor Bayou tidal Taylor Bayou tidal

Tater body type: Freshwater Str	eam						Water bo	ody size:	7.1	N	liles
	<u>AU ID</u>	Assessment Area (AU)	# of Samples	#_ Assessed	# of Exc	Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	2006 Supp	Integ Supp	Imp Category	<u>Carry</u> Forwa
quatic Life Use											
Acute Ambient Toxicity tests in wat	ter										
Water Acute Toxicity	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	10	10	1		AD	FS	FS		N
	0702A_03	Upper portion from its headwaters at the Port Arthur Canal to SH82	10	10	4		AD	NS	NS	5c	N
	0702A_04	Drainage canal leading into Alligator Bayou approx. 0.8 miles north of SH82	10	10	3		AD	NS	NS	5c	1
Acute Toxic Substances in water											
Metals	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	12	12			AD	FS	FS]
	0702A_03	Upper portion from its headwaters at the Port Arthur Canal to SH82	1	1			ID	NA	NA		
	0702A_04	Drainage canal leading into Alligator Bayou approx. 0.8 miles north of SH82	1	1			ID	NA	NA		
Organics	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	6	6			LD	NC	NC		
	0702A_03	Upper portion from its headwaters at the Port Arthur Canal to SH82	1	1			ID	NA	NA		
	0702A_04	Drainage canal leading into Alligator Bayou approx. 0.8 miles north of SH82	1	1			ID	NA	NA		
Chronic Toxic Substances in water											
Metals	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	12	12			AD	FS	FS]
	0702A_03	Upper portion from its headwaters at the Port Arthur Canal to SH82	1	1			ID	NA	NA		-
Organics	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	6	6			LD	NC	NC		
	0702A_03	Upper portion from its headwaters at the Port Arthur Canal to SH82	1	1			ID	NA	NA		

nter body type: Freshwater Stre	am						Water bo	ody size:	7.1	N	⁄Iiles
	<u>AU ID</u>	Assessment Area (AU)	# of Samples	#_ Assessed	# of Exc	Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	2006 Supp	<u>Integ</u> <u>Supp</u>	Imp Category	<u>Carry</u> <u>Forwa</u>
uatic Life Use											
Chronic Toxicity tests in whole sedin	nent										
Sediment Chronic Toxicity	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	4	4	4		LD				N
	0702A_03	Upper portion from its headwaters at the Port Arthur Canal to SH82	1	1	1		ID				N
	0702A_04	Drainage canal leading into Alligator Bayou approx. 0.8 miles north of SH82	1	1	1		ID				N
Dissolved Oxygen 24hr average											
Dissolved Oxygen 24hr	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	6	6	0		LD	NC	NC]
Dissolved Oxygen 24hr minimum											
Dissolved Oxygen 24hr	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	6	6	0		LD	NC	NC		
Dissolved Oxygen grab minimum											
Dissolved Oxygen Grab	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	20	20	0		AD	FS	FS		
	0702A_03	Upper portion from its headwaters at the Port Arthur Canal to SH82	9	0			TR	NA	NA		
		Drainage canal leading into Alligator Bayou approx. 0.8 miles north of SH82	8	0			TR	NA	NA		
Dissolved Oxygen grab screening lev	el										
Dissolved Oxygen Grab	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	20	20	2		AD	NC	NC		
		Upper portion from its headwaters at the Port Arthur Canal to SH82	9	0			TR	NA	NA		
	0702A_04	Drainage canal leading into Alligator Bayou approx. 0.8 miles north of SH82	8	0			TR	NA	NA		
Elutriate Toxicity tests in sediment											
Sediment Elutriate Toxicity	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	4	4	3		LD				

Water body type: Freshwater Str	eam						Water bo	ody size:	7.1	N	Iiles
	<u>AU ID</u>	Assessment Area (AU)	# of Samples	#_ Assessed	# of Exc	Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	2006 Supp	Integ Supp	Imp Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use											
Fish Community											
Fish Community	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	4	4		30.0	AD	NS	NS	5c	No
Habitat											
Habitat	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	4	4		14.0	AD	FS	FS		No
LOE Toxic Sediment condition											
Sediment Toxicity (LOE)	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou					JQ	NS	NS	5c	No
Macrobenthic Community											
Macrobenthic Community	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	4	4		22.0	AD	FS	FS		No
Toxic Substances in sediment											
Chrysene	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	10	10	4		AD	CS	CS		No
Lead	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	10	10	8		AD	CS	CS		No
Metals		Lower portion from SH82 to its confluence with Taylor Bayou	11	11			AD	NC	NC		No
	0702A_03	Upper portion from its headwaters at the Port Arthur Canal to SH82	1	1			ID	NA	NA		No
Organics		Lower portion from SH82 to its confluence with Taylor Bayou	10	10			AD	NC	NC		No
	0702A_03	Upper portion from its headwaters at the Port Arthur Canal to SH82	1	1			ID	NA	NA		No
Phenanthrene	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	10	10	4		AD	CS	CS		No
Pyrene	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	10	10	4		AD	CS	CS		No

Segment ID: 0702A Water body type: Freshwater Stream		ody name: Alligator Bayou (uncla	assified wa	ater bod	<u>ly)</u>		Water bo	dy size	7.1	V	liles
Water body type: Freshwater Stream	1		# of	<u>#</u>	# of	M		-			
	<u>AU ID</u>	Assessment Area (AU)	Samples	Assessed	<u># 01</u> <u>Exc</u>	Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	2006 Supp	Integ Supp	Imp Category	<u>Carry</u> <u>Forward</u>
Fish Consumption Use	_										
Bioaccumulative Toxics in fish tissue											
Multiple Constituents	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	14	14			AD	NC	NC		No
HH Bioaccumulative Toxics in water											
Multiple Constituents		Lower portion from SH82 to its confluence with Taylor Bayou	14	14			AD	FS	FS		No
	0702A_03	Upper portion from its headwaters at the Port Arthur Canal to SH82	1	1			ID	NA	NA		No
	0702A_04	Drainage canal leading into Alligator Bayou approx. 0.8 miles north of SH82	1	1			ID	NA	NA		No
General Use	_										
Nutrient Screening Levels											
Ammonia	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	11	11	0		AD	NC	NC		No
Chlorophyll-a	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	11	11	9		AD	CS	CS		No
Nitrate	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	11	11	2		AD	NC	NC		No
Orthophosphorus	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	11	11	1		AD	NC	NC		No
Total Phosphorus	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	11	11	0		AD	NC	NC		No
Recreation Use	_										
Bacteria Geomean											
Fecal coliform	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	7	7		155.0	LD	NC	NC		No
Bacteria Single Sample											
Fecal coliform	0702A_02	Lower portion from SH82 to its confluence with Taylor Bayou	7	7	2		LD	NC	NC		No

Aquatic Life Use	Water body type: Tidal Stream						Water be	ody size:	16.0	M	liles
Acute Toxic Substances in water Metals 0703_01 Entire segment 4 4 0 LD NC NC Chronic Toxic Substances in water Metals 0703_01 Entire segment 4 4 0 LD NC NC Dissolved Oxygen 24hr average Dissolved Oxygen 24hr minimum 0 0 0 ID NA NA Dissolved Oxygen 24hr minimum 0 0 ID NA NA Dissolved Oxygen 24hr minimum 0 0 ID NA NA Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD FS FS Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD NC NC Toxic Substances in sediment Metals 0703_01 Entire segment 4 4 0 LD NC NC Fish Consumption Use ID NC NC <		<u>AU ID</u>	Assessment Area (AU)							_	<u>Carry</u> Forwai
Metals 0703_01 Entire segment 4 4 0 LD NC NC Chronic Toxic Substances in water Metals 0703_01 Entire segment 4 4 0 LD NC NC Dissolved Oxygen 24hr average Dissolved Oxygen 24hr minimum 0 0 1D NA NA Dissolved Oxygen 24hr minimum 0 0 1D NA NA Dissolved Oxygen grab minimum 0 0 4 AD FS FS Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD FS FS Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD NC NC Toxic Substances in sediment Metals 0703_01 Entire segment 4 4 0 LD NC NC Organics 0703_01 Entire segment 4 4 4 0 LD NC	Aquatic Life Use	_									
Chronic Toxic Substances in water Metals O703_01 Entire segment A	Acute Toxic Substances in water										
Metals 0703_01 Entire segment 4 4 0 LD NC NC Dissolved Oxygen 24hr average Dissolved Oxygen 24hr 0703_01 Entire segment 0 0 ID NA NA Dissolved Oxygen 24hr minimum 0 0 ID NA NA Dissolved Oxygen grab minimum 0 0 ID NA NA Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD FS FS Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD NC NC Toxic Substances in sediment 39 39 0 AD NC NC Metals 0703_01 Entire segment 4 4 0 LD NC NC Organics 0703_01 Entire segment 4 4 0 LD NC NC HH Bioaccumulative Toxics in water Chromium 0703_01	Metals	0703_01	Entire segment	4	4	0	LD	NC	NC		N
Dissolved Oxygen 24hr average Dissolved Oxygen 24hr O703_01 Entire segment O O O ID NA NA NA Dissolved Oxygen 24hr minimum Dissolved Oxygen 24hr O703_01 Entire segment O O O ID NA NA NA Dissolved Oxygen grab minimum O703_01 Entire segment O O O O D NA NA NA Dissolved Oxygen Grab O703_01 Entire segment O703_01 Entire segme	Chronic Toxic Substances in water										
Dissolved Oxygen 24hr 0703_01 Entire segment 0 0 0 1D NA NA	Metals	0703_01	Entire segment	4	4	0	LD	NC	NC		N
Dissolved Oxygen 24hr 0703_01 Entire segment 0 0 ID NA NA Dissolved Oxygen grab minimum Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD FS FS Dissolved Oxygen grab screening level 0703_01 Entire segment 39 39 0 AD NC NC Toxic Substances in sediment Wetals 0703_01 Entire segment 4 4 0 LD NC NC Organics 0703_01 Entire segment 4 4 0 LD NC NC Fish Consumption Use HH Bioaccumulative Toxics in water Chromium 0703_01 Entire segment 4 4 0 LD NC NC	Dissolved Oxygen 24hr average										
Dissolved Oxygen grab minimum Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD FS FS Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD NC NC Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD NC NC Toxic Substances in sediment Metals 0703_01 Entire segment 4 4 4 0 LD NC NC Organics 0703_01 Entire segment 4 4 4 0 LD NC NC Fish Consumption Use HH Bioaccumulative Toxics in water Chromium 0703_01 Entire segment 4 4 4 0 LD NC NC	Dissolved Oxygen 24hr	0703_01	Entire segment	0	0		ID	NA	NA		N
Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD FS FS Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD NC NC Toxic Substances in sediment Metals 0703_01 Entire segment 4 4 0 LD NC NC Organics 0703_01 Entire segment 4 4 0 LD NC NC Fish Consumption Use HH Bioaccumulative Toxics in water Chromium 0703_01 Entire segment 4 4 4 0 LD NC NC	Dissolved Oxygen 24hr minimum										
Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD FS FS Dissolved Oxygen grab screening level Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD NC NC Toxic Substances in sediment Metals 0703_01 Entire segment 4 4 0 LD NC NC Organics 0703_01 Entire segment 4 4 0 LD NC NC Fish Consumption Use HH Bioaccumulative Toxics in water Chromium 0703_01 Entire segment 4 4 4 0 LD NC NC	Dissolved Oxygen 24hr	0703_01	Entire segment	0	0		ID	NA	NA		N
Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD NC NC Toxic Substances in sediment Metals 0703_01 Entire segment 4 4 0 LD NC NC Organics 0703_01 Entire segment 4 4 0 LD NC NC Fish Consumption Use HH Bioaccumulative Toxics in water Chromium 0703_01 Entire segment 4 4 0 LD NC NC	Dissolved Oxygen grab minimum										
Dissolved Oxygen Grab 0703_01 Entire segment 39 39 0 AD NC NC Toxic Substances in sediment Metals 0703_01 Entire segment 4 4 0 LD NC NC Organics 0703_01 Entire segment 4 4 0 LD NC NC Fish Consumption Use HH Bioaccumulative Toxics in water Chromium 0703_01 Entire segment 4 4 0 LD NC NC	Dissolved Oxygen Grab	0703_01	Entire segment	39	39	0	AD	FS	FS		N
Toxic Substances in sediment Metals 0703_01 Entire segment 4 4 0 LD NC NC Organics 0703_01 Entire segment 4 4 0 LD NC NC Fish Consumption Use HH Bioaccumulative Toxics in water Chromium 0703_01 Entire segment 4 4 0 LD NC NC	Dissolved Oxygen grab screening level										
Metals 0703_01 Entire segment 4 4 0 LD NC NC Organics 0703_01 Entire segment 4 4 0 LD NC NC Fish Consumption Use HH Bioaccumulative Toxics in water Chromium 0703_01 Entire segment 4 4 0 LD NC NC	Dissolved Oxygen Grab	0703_01	Entire segment	39	39	0	AD	NC	NC		N
Organics 0703_01 Entire segment 4 4 0 LD NC NC Fish Consumption Use HH Bioaccumulative Toxics in water Chromium 0703_01 Entire segment 4 4 0 LD NC NC	Toxic Substances in sediment										
HH Bioaccumulative Toxics in water Chromium 0703_01 Entire segment 4 4 0 LD NC NC	Metals	0703_01	Entire segment	4	4	0	LD	NC	NC		N
HH Bioaccumulative Toxics in water Chromium 0703_01 Entire segment 4 4 0 LD NC NC	Organics	0703_01	Entire segment	4	4	0	LD	NC	NC		N
Chromium 0703_01 Entire segment 4 4 0 LD NC NC	Fish Consumption Use										
	HH Bioaccumulative Toxics in water	_									
Lead 0703 01 Entire segment 4 4 0 LD NC NC	Chromium	0703_01	Entire segment	4	4	0	LD	NC	NC		N
	Lead	0703 01	Entire segment	4	4	0	LD	NC	NC		N
		_	•	-							

Segment ID: 0703	water	oody name: Sabine-Neches	Canal Hdal				Water	adv. aless	: 16.0) N	files
Water body type: Tidal Stream			" 0	ш			Water b				
	<u>AU ID</u>	Assessment Area (AU)	# of Samples	# Assessed	# of Exc	Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	2006 Supp	Integ Supp	Imp Category	<u>Carry</u> <u>Forwar</u>
General Use											
High pH											
pН	0703_01	Entire segment	39	39	0		AD	FS	FS		N
Low pH											
pН	0703_01	Entire segment	39	39	1		AD	FS	FS		N
Nutrient Screening Levels											
Ammonia	0703_01	Entire segment	40	40	0		AD	NC	NC		N
Chlorophyll-a	0703_01	Entire segment	39	39	0		AD	NC	NC		N
Nitrate	0703_01	Entire segment	16	16	0		AD	NC	NC		N
Orthophosphorus	0703_01	Entire segment	40	40	4		AD	NC	NC		N
Total Phosphorus	0703_01	Entire segment	40	40	0		AD	NC	NC		N
Water Temperature											
Temperature	0703_01	Entire segment	40	40	0		AD	FS	FS		N
Recreation Use											
Bacteria Geomean											
E. coli	0703 01	Entire segment	24	24		15.0	AD	FS	FS		N
Fecal coliform	0703 01	Entire segment	25	25		18.0	SM	FS	FS		N
Bacteria Single Sample											
E. coli	0703_01	Entire segment	24	24	3		AD	FS	FS		N
Fecal coliform	0703_01	Entire segment	25	25	0		SM	FS	FS		N
	- -	-									

ter body type: Freshwater Strea	m						Water bo	dy size:	14.0) N	Iiles
	<u>AU ID</u>	Assessment Area (AU)	# of Samples	#_ Assessed	# of Exc	Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	2006 Supp	<u>Integ</u> <u>Supp</u>	Imp Category	<u>Carry</u> <u>Forwa</u>
uatic Life Use											
Acute Toxic Substances in water											
Metals	0704_02	From confluence with Bayou Din to upper end of segment	10	10			AD	FS	FS		N
Chronic Toxic Substances in water											
Metals	0704_02	From confluence with Bayou Din to upper end of segment	10	10			AD	FS	FS		N
Dissolved Oxygen 24hr average											
Dissolved Oxygen 24hr	0704_01	From confluence with Taylor Bayou to confluence with Bayou Din	14	14	1		AD	FS	FS		N
	0704_02	From confluence with Bayou Din to upper end of segment	31	31	6		AD	NS	NS	5a]
Dissolved Oxygen 24hr minimum											
Dissolved Oxygen 24hr	0704_01	From confluence with Taylor Bayou to confluence with Bayou Din	14	14	1		AD	FS	FS]
	0704_02	From confluence with Bayou Din to upper end of segment	31	31	5		AD	NS	NS	5a]
Dissolved Oxygen grab minimum											
Dissolved Oxygen Grab	0704_01	From confluence with Taylor Bayou to confluence with Bayou Din	31	31	2		SM	FS	FS]
	0704_02	From confluence with Bayou Din to upper end of segment	46	41	1		SM	FS	FS		
Dissolved Oxygen grab screening leve	l										
Dissolved Oxygen Grab	0704_01	From confluence with Taylor Bayou to confluence with Bayou Din	31	31	4		SM	NC	NC		
	0704_02	From confluence with Bayou Din to upper end of segment	46	41	4		SM	NC	NC		
Toxic Substances in sediment											
Metals	0704_02	From confluence with Bayou Din to upper end of segment	1	1			ID	NA	NA		

Segment ID: 0704	Water body name: Hillebrandt Bayou								
Water body type: Freshwater S	ream				Water b	ody size	: 14.0	ı M	liles
	AU ID Assessment Area (AU)	<u># of</u> <u>Samples</u>	#_ Assessed	# of Mean of Exc Samples	<u>Dataset</u> <u>Qualifier</u>	<u>2006</u> <u>Supp</u>	<u>Integ</u> <u>Supp</u>	<u>Imp</u> <u>Category</u>	<u>Carry</u> <u>Forward</u>
Fish Consumption Use									
HH Bioaccumulative Toxics in wa	ter								
Chromium	0704_02 From confluence with Bayou Din to upper end of segment	10	10	5.0	AD	NC	NC		No
Lead	0704_02 From confluence with Bayou Din to upper end of segment	9	9	1.0	LD	NC	NC		No

Vater body type: Freshwater S	Stream			"			Water bo	·	14.0) N	liles
	<u>AU ID</u>	Assessment Area (AU)	# of Samples	# Assessed	# of Exc	Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	<u>2006</u> <u>Supp</u>	Integ Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> <u>Forward</u>
General Use											
Dissolved Solids											
Chloride	0704_01	From confluence with Taylor Bayou to confluence with Bayou Din	45	45		89.0	AD	FS	FS		No
	0704_02	From confluence with Bayou Din to upper end of segment	45	45		89.0	AD	FS	FS		No
Sulfate	0704_01	From confluence with Taylor Bayou to confluence with Bayou Din	35	35		38.0	AD	FS	FS		No
	0704_02	From confluence with Bayou Din to upper end of segment	35	35		38.0	AD	FS	FS		No
Total Dissolved Solids	0704_01	From confluence with Taylor Bayou to confluence with Bayou Din	45	45		353.0	AD	FS	FS		No
	0704_02	From confluence with Bayou Din to upper end of segment	45	45		353.0	AD	FS	FS		No
High pH											
pH	0704_01	From confluence with Taylor Bayou to confluence with Bayou Din	31	31	0		AD	FS	FS		No
	0704_02	From confluence with Bayou Din to upper end of segment	46	41	0		AD	FS	FS		No
Low pH											
pН	0704_01	From confluence with Taylor Bayou to confluence with Bayou Din	31	31	0		AD	FS	FS		No
	0704_02	From confluence with Bayou Din to upper end of segment	46	41	0		AD	FS	FS		No

2006 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note; Carry-forward refers to impairments without sufficient information in 2006 to re-evaluate the level of support.

0704 Water body name: Hillebrandt Bayou **Segment ID:** 14.0 Miles Water body size: Water body type: Freshwater Stream # # of # of Mean of Dataset 2006 Integ Imp Carry Assessment Area (AU) Samples Assessed Exc Supp Forward Samples Supp Category Qualifier General Use **Nutrient Screening Levels** From confluence with Taylor Bayou to Ammonia 0704 01 **30** 3 **AD** NC NC No 30 confluence with Bayou Din From confluence with Bayou Din to upper end 0704 02 35 35 14 AD CS CS Nο of segment Chlorophyll-a 0704 01 From confluence with Taylor Bayou to **30 30** 20 AD CS CS No confluence with Bayou Din From confluence with Bayou Din to upper end 0704 02 10 10 AD CS CS No **10** of segment 0704 01 From confluence with Taylor Bayou to Nitrate **30** AD NC NC No 30 confluence with Bayou Din 0704 02 From confluence with Bayou Din to upper end 35 **AD** NC NC No 35 of segment Orthophosphorus 0704 01 From confluence with Taylor Bayou to **29** AD NC NC No 29 confluence with Bayou Din 0704 02 From confluence with Bayou Din to upper end AD NC NC No 30 **30** 3 of segment **Total Phosphorus** 0704 01 From confluence with Taylor Bayou to **30** 1 AD NC NC No 30 confluence with Bayou Din 0704 02 From confluence with Bayou Din to upper end 35 AD NC NC No 35 2 of segment Water Temperature Temperature From confluence with Taylor Bayou to 0704 01 57 0 AD FS FS No 57 confluence with Bayou Din 0704 02 From confluence with Bayou Din to upper end 41 AD FS FS No 46 of segment

Segment ID: 0704	Water b	body name: <u>Hillebrandt Bayou</u>									
Water body type: Freshwater Stream	n	<u> </u>					Water bo	ody size:	: 14.0) N	Miles
	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	# Assessed	<u># of</u> <u>Exc</u>	Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	<u>2006</u> <u>Supp</u>	<u>Integ</u> <u>Supp</u>	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forward
Recreation Use	_										
Bacteria Geomean											
E. coli	0704_01	From confluence with Taylor Bayou to confluence with Bayou Din	10	10		31.0	AD	FS	FS		No
	0704_02	From confluence with Bayou Din to upper end of segment	15	15		11.0	AD	FS	FS		No
Fecal coliform	0704_01	From confluence with Taylor Bayou to confluence with Bayou Din	12	12		31.0	AD	FS	FS		No
	0704_02	From confluence with Bayou Din to upper end of segment	20	20		22.0	SM	FS	FS		No
Bacteria Single Sample											
E. coli	0704_01	From confluence with Taylor Bayou to confluence with Bayou Din	10	10	2		AD	FS	FS		No
	0704_02	From confluence with Bayou Din to upper end of segment	15	15	1		AD	FS	FS		No
Fecal coliform	0704_01	From confluence with Taylor Bayou to confluence with Bayou Din	12	12	2		AD	FS	FS		No
	0704_02	From confluence with Bayou Din to upper end of segment	20	20	1		SM	FS	FS		No

Water body type: Freshwater Stream	m						Water bo	dy size:	11.5	M	iles
	<u>AU ID</u>	Assessment Area (AU)	# of Samples	#_ Assessed	# of Exc	Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	2006 Supp	Integ Supp	Imp Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use	_										
Dissolved Oxygen 24hr average											
Dissolved Oxygen 24hr	0704A_01	Entire water body	0	0			ID	NA	NA		No
Dissolved Oxygen 24hr minimum											
Dissolved Oxygen 24hr	0704A_01	Entire water body	0	0			ID	NA	NA		No
Dissolved Oxygen grab minimum											
Dissolved Oxygen Grab		Entire water body	22	21	0		AD	FS	FS		No
Dissolved Oxygen grab screening leve											
Dissolved Oxygen Grab	0704A_01	Entire water body	22	21	2		AD	NC	NC		No
General Use	_										
Nutrient Screening Levels											
Ammonia	0704A_01	Entire water body	2	2	1		ID	NA	NA		No
Chlorophyll-a	0704A_01	Entire water body	0	0			ID	NA	NA		No
Nitrate	0704A_01	Entire water body	2	2	0		ID	NA	NA		No
Orthophosphorus	0704A_01	Entire water body	2	2	0		ID	NA	NA		No
Total Phosphorus	0704A_01	Entire water body	2	2	0		ID	NA	NA		No
Recreation Use	_										
Bacteria Geomean											
E. coli	0704A_01	Entire water body	0	0			ID	NA	NA		No
Fecal coliform	0704A_01	Entire water body	2	2		25.0	ID	NA	NA		No
Bacteria Single Sample											
E. coli	0704A_01	Entire water body	0	0			ID	NA	NA		No
Fecal coliform	0704A_01	Entire water body	2	2	1		ID	NA	NA		No

Water body type: Freshwater Stream	n			"			Water bo	dy size:	7.4	M	liles
	<u>AU ID</u>	Assessment Area (AU)	# of Samples	#_ Assessed	# of Exc	Mean of Samples	<u>Dataset</u> <u>Qualifier</u>	2006 Supp	Integ Supp	Imp Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use	_										
Dissolved Oxygen 24hr average											
Dissolved Oxygen 24hr	0704C_01	Entire water body	0	0			ID	NA	NA		No
Dissolved Oxygen 24hr minimum											
Dissolved Oxygen 24hr	0704C_01	Entire water body	0	0			ID	NA	NA		No
Dissolved Oxygen grab minimum											
Dissolved Oxygen Grab		Entire water body	21	21	1		AD	FS	FS		No
Dissolved Oxygen grab screening level											
Dissolved Oxygen Grab	0704C_01	Entire water body	21	21	1		AD	NC	NC		No
General Use	_										
Nutrient Screening Levels											
Ammonia	0704C_01	Entire water body	0	0			ID	NA	NA		No
Chlorophyll-a	0704C_01	Entire water body	0	0			ID	NA	NA		Ne
Nitrate	0704C_01	Entire water body	0	0			ID	NA	NA		N
Orthophosphorus	0704C_01	Entire water body	0	0			ID	NA	NA		N
Total Phosphorus	0704C_01	Entire water body	0	0			ID	NA	NA		No
Recreation Use	_										
Bacteria Geomean											
E. coli	0704C_01	Entire water body	0	0			ID	NA	NA		No
Fecal coliform	0704C_01	Entire water body	0	0			ID	NA	NA		N
Bacteria Single Sample											
E. coli	0704C_01	Entire water body	0	0			ID	NA	NA		N
Fecal coliform	0704C_01	Entire water body	0	0			ID	NA	NA		No